Algorithms that continually invent both problems and solutions

The Data Exchange Podcast: Kenneth Stanley on his work at Uber AI and starting a new group focused on open-endedness at OpenAI.


SubscribeiTunesAndroidSpotifyStitcherGoogle, and RSS.

In this episode of the Data Exchange I speak with Kenneth Stanley, a Senior Research Manager at Uber AI and a Professor at UCF. Ken just announced that starting in June he is starting a new research group focused on open-endedness at OpenAI.  He is a pioneer in the field of neuroevolution – a method for evolving and learning neural networks through evolutionary algorithms. Ken and his colleague, Joel Lehman, wrote one of my favorite books on AI aimed at a broad audience: Why Greatness Cannot Be Planned. In this episode we discuss his upcoming move to OpenAI, as well as his recent work on open-ended algorithms.

Ray Summit has been postponed until the Fall. In the meantime, enjoy an amazing series of FREE monthly virtual conferences beginning May 13th: The Future of AI with Michael Jordan and Ion Stoica. Go to anyscale.com/events to register.

Our conversation covered:

  • Ken’s new position at OpenAI.
  • The transition from being a longtime academic researcher to founding and helping lead an industrial research team (Uber AI Labs).
  • Open-ended algorithms, specifically his work on POET (Paired Open-Ended Trailblazer) and Enhanced POET.
  • Generative Teaching Networks.

Related content:

Subscribe to our Newsletter:
We also publish a popular newsletter where we share highlights from recent episodes, trends in AI / machine learning / data, and a collection of recommendations.


Back when I was still at O’Reilly, I recruited Ken to write these two seminal posts:


[Image: Abandoned Fish Processing Pier, Western End of Drakes Beach HDR 1 by Dean Wampler, used with permission.]